Inverse Equality Co-Neighborhood Domination in Graphs
نویسندگان
چکیده
منابع مشابه
Bounds on neighborhood total domination in graphs
In this paper, we continue the study of neighborhood total domination in graphs first studied by Arumugam and Sivagnanam [S. Arumugam, C. Sivagnanam, Neighborhood total domination in graphs, Opuscula Math. 31 (2011) 519–531]. A neighborhood total dominating set, abbreviated NTD-set, in a graph G is a dominating set S in G with the property that the subgraph induced by the open neighborhood of t...
متن کاملNeighborhood Connected Equitable Domination in Graphs
Let G = (V,E) be a connected graph, An equitable dominating S of a graph G is called the neighborhood connected equitable dominating set (nced-set) if the induced subgraph 〈Ne(S)〉 is connected The minimum cardinality of a nced-set of G is called the neighborhood connected equitable domination number of G and is denoted by γnce(G). In this paper we initiate a study of this parameter. For any gra...
متن کاملThree-valued k-neighborhood domination in graphs
Let k~l be an integer, and let G = (V, E) be a graph. The closed kneighborhood N k[V] of a vertex v E V is the set of vertices within distance k from v. A 3-valued function f defined on V of the form f : V --+ { -1,0, I} is a three-valued k-neighborhood dominating function if the sum of its function values over any closed k-neighborhood is at least 1. The weight of a threevalued k-neighborhood ...
متن کاملInverse and Disjoint Restrained Domination in Graphs
Let D be a minimum secure restrained dominating set of a graph G = (V, E). If V – D contains a restrained dominating set D' of G, then D' is called an inverse restrained dominating set with respect to D. The inverse restrained domination number γr(G) of G is the minimum cardinality of an inverse restrained dominating set of G. The disjoint restrained domination number γrγr(G) of G is the minimu...
متن کاملGraphs with Constant Sum of Domination and Inverse Domination Numbers
A subsetD of the vertex set of a graph G, is a dominating set if every vertex in V −D is adjacent to at least one vertex inD. The domination number γ G is the minimum cardinality of a dominating set of G. A subset of V −D, which is also a dominating set of G is called an inverse dominating set of G with respect toD. The inverse domination number γ ′ G is the minimum cardinality of the inverse d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1879/3/032036